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Oscillations of the large-scale circulation in
turbulent Rayleigh–Bénard convection: the
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We report an experimental study of the large-scale circulation (LSC) in a turbulent
Rayleigh–Bénard convection cell with aspect ratio unity. The temperature-extrema-
extraction (TEE) method for obtaining the dynamic information of the LSC is
presented. With this method, the azimuthal angular positions of the hot ascending
and cold descending flows along the sidewall are identified from the measured
instantaneous azimuthal temperature profile. The motion of the LSC is then
decomposed into two different modes based on these two angles: the azimuthal mode
and the translational or sloshing mode that is perpendicular to the vertical circulation
plane of the LSC. Comparing to the previous sinusoidal-fitting (SF) method, it is
found that both the TEE and the SF methods give the same information about
the azimuthal motion of the LSC, but the TEE method in addition can provide
information about the sloshing motion of the LSC. The sloshing motion is found
to oscillate time-periodically around the cell’s central vertical axis with an amplitude
being nearly independent of the turbulent intensity and to have a π/2 phase difference
with the torsional mode. It is further found that the azimuthal angular positions of
the hot ascending and cold descending flows oscillate out of phase with each other
by π, which leads to the observations of the torsional mode when these two flows are
near the top and the bottom plates, respectively, and of the sloshing mode when they
are both near the mid-height plane. A direct velocity measurement further confirms
the existence of the bulk sloshing mode of the flow field.

1. Introduction
The phenomenon of thermal convection is ubiquitous in nature and in many

engineering applications. A simple but paradigmatic model that has been widely
used to study the convection phenomenon for more than a century is the turbulent
Rayleigh–Bénard (RB) convection, which is a fluid layer heated from below and
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cooled on the top (for recent reviews, see Siggia 1994; Ahlers, Grossmann & Lohse
in press). The dynamics of the RB system is determined by its geometry and two
dimensionless control parameters: The Rayleigh number Ra =βgH 3�T/νκ and the
Prandtl number Pr = ν/κ , where g is the gravitational acceleration, H the height of
the cell, �T the temperature difference across the cell and β , ν and κ , respectively, the
thermal expansion coefficient, the kinematic viscosity and the thermal diffusivity of the
fluid. The geometry of the system is described by its symmetry and the aspect ratio of
the convection cell Γ . For a cylindrical cell, Γ = D/H with D being the cell’s diameter.

A prominent feature of turbulent RB system is the presence of the large-scale
circulation (LSC), which is self-organized from thermal plumes that erupt from the
top and the bottom thermal boundary layers (Xi, Lam & Xia 2004). We call it
‘large-scale’ because it is a single cellular structure that spans the height of the cell,
at least in cells with aspect ratios close to one. Since its discovery by Krishnamurti &
Howard (1981) through flow visualization, the LSC, also called the mean wind, has
been studied extensively using different techniques, such as flow visualization (Tilgner,
Belmonte & Libchaber 1993; Funfschilling & Ahlers 2004; Xi et al. 2004), the laser
Doppler technique (Qiu & Tong 2001a, b), ultrasonic technique in mercury (Mashiko
et al. 2004), the particle image velocimetry (PIV) technique in water and in other
high Prandtl number (Pr) fluids (Burr, Kinzelbach & Tsinober 2003; Xia, Sun &
Zhou 2003; Xi et al. 2004; Sun, Xia & Tong 2005b; Xi, Zhou & Xia 2006), a floating
flow-indicator method (Sun, Xi & Xia 2005a; Xi et al. 2006) and the multi-thermal-
probe technique (Cioni, Ciliberto & Sommeria 1997; Brown, Nikolaenko & Ahlers
2005; Brown & Ahlers 2006; Sun & Xia 2007; Xi & Xia 2007, 2008a, b; Funfschilling,
Brown & Ahlers 2008). The LSC is found to persist in fluids with extremely low
values of Pr such as mercury (Cioni et al. 1997), moderate Pr such as helium gas
(Niemela et al. 2001; Sreenivasan, Bershadskii & Niemela 2002) and water (Qiu &
Tong 2001a, b) and other high Pr fluids (Xi et al. 2004). An intriguing feature of the
LSC is that its motion can sometimes come to a complete halt momentarily and then
restart in the same or different directions, these small-probability events are referred
to as cessations and reversals. In an axial symmetric configuration, the LSC is also
found to constantly undergoing stochastic azimuthal meandering and reorientations.
These interesting dynamic features of the LSC will not be discussed in the present
paper, and we refer interested readers to the recent review by Ahlers et al. (in press)
and references therein.

Another intriguing feature of the LSC is that its motions near the top and the
bottom plates of a cylindrical cell are found to exhibit a periodic azimuthal oscillation
with a phase difference of π (Funfschilling & Ahlers 2004), which is referred to
as the torsional mode of the LSC (Funfschilling et al. 2008). In addition to the
torsional oscillation, there also exists a well-defined low-frequency oscillation in both
the temperature and velocity fields, which has been long observed in turbulent RB
experiments using various fluids (see, e.g. Castaing et al. 1989; Takeshita et al.
1996; Ashkenazi & Steinberg 1999; Qiu et al. 2000; Shang & Xia 2001; Qiu &
Tong 2001a, 2002; Lam et al. 2002). Such oscillations are found not only in aspect-
ratio-one cylindrical cells but also in larger-aspect-ratio cylindrical cells (Niemela &
Sreenivasan 2006; du Puits, Resagk & Thess 2007) and in convection cells with other
geometries, such as rectangular cells (Zhou, Sun & Xia 2007b). As oscillation is a
common phenomenon in closed-flow systems, understanding the nature and the origin
of the low-frequency oscillation in the RB system should be of general interest. To
understand this oscillation, Villermaux (1995) proposed a mechanism of oscillations in
the top and the bottom boundary layers of the system which are coupled by the LSC.
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An implication of this model is that thermal plumes are emitted both periodically
and alternately from the top and the bottom boundary layers. Some later experiments
based on single-point or two-dimensional measurements of the temperature and
velocity fields appear to support this picture (Ciliberto, Cioni & Laroche 1996; Qiu
& Tong 2001a, 2002; Sun et al. 2005b; Tsuji et al. 2005). Some other works, however,
pointed out that periodic plume emission is not necessary for the periodicity of the
system (Funfschilling & Ahlers 2004; Resagk et al. 2006). Recently, Ahlers et al. (in
press) conjectured that the low-frequency oscillation of the system presumably is due
to the torsional oscillation of the LSC. However, the torsional mode alone is unable
to explain the observed temperature and velocity oscillations at the mid-height plane
of the cell, since simple twisting oscillations near the top and the bottom plates would
cancel out at the mid-height plane because of symmetry.

In a recent experimental study of the three-dimensional spatial structure of the
low-frequency temperature oscillations, Xi et al. (2009) showed that the low-frequency
temperature oscillation at the cell’s mid-height plane is due to the sloshing oscillation
of the LSC. Their results showed convincingly and conclusively that the temperature
oscillation in turbulent RB system is slaved to the oscillation of velocity field and thus
temperature plays a passive role in the low-frequency oscillations; although the LSC
itself is self-organized from thermal plumes (Xi et al. 2004) and driven by the buoyant
forces of the plumes. It should be mentioned that a previous single-point velocity
measurement has shown that at the cell centre the strongest velocity oscillation is
along the direction perpendicular to the LSC plane and that the strength of this
oscillation decays away from the cell centre towards the plates (Qiu et al. 2004).
More recently, a study of the three-dimensional spatial structure of the velocity field
has shown that the velocities along the axis perpendicular to the LSC plane and at
the cell’s mid-height plane correlate strongly with each other and have a common
phase across the cell’s entire diameter (Sun et al. 2005b). Both these results imply the
existence of the sloshing mode of the LSC. However, the nature and the properties
of this mode and its relationship with the torsional mode of the LSC have not been
revealed, which are among the objectives of this paper.

The rest of the paper is organized as follows. We describe the experimental setup
and conditions in § 2.1. In § 2.2, we describe in detail a method for extracting the
azimuthal angular positions of the hottest and the coldest fluids along the sidewall and
the LSC’s central line from the measured instantaneous azimuthal temperature profile
and provide a validation of this method. Comparisons with the previous sinusoidal-
fitting (SF) method will also be made. The experimental results are presented and
analysed in § 3, which is divided into three parts. In § 3.1 we present a detailed study
of the sloshing oscillation of the LSC. Section 3.2 discusses the relationship between
the sloshing mode and the torsional mode of the LSC and § 3.3 presents results
from a direct velocity measurement of the bulk sloshing mode of the flow field. We
summarize our findings and conclude in § 4.

2. Experimental setup, methods and parameters
2.1. The convection cell and experimental conditions

The experiment was carried out in a cylindrical cell with its top and bottom plates
made of 1.5 cm thick copper, the sidewall of a 5 mm thick Plexiglas tube and water
as convection fluid (Xi & Xia 2008a, b). The inner diameter D and the height H

of the cell are both 19.0 cm and hence its aspect ratio Γ is unity. Twenty-four
thermistors (Omega, 44031) with a diameter of 2.5 mm and an accuracy of 0.01◦ were
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Figure 1. (a) Top-view of the convection cell and coordinate system used. Also shown is a
typical instantaneous azimuthal positions αh and αc of the hot ascending and cold descending
flows, corresponding to the temperature profile T (α) shown in (c). The z-axis (not shown
in the figure) is along the cell’s central vertical axis. The numbers 1–8 show the locations
of the sidewall thermistors. (b) Side-view of the cell with measured circulation path of the
LSC reproduced from Sun & Xia (2005). The three dashed lines show the top, middle and
bottom planes where the thermistors are placed. (c) An example of a typical instantaneous
temperature profile (open circles) measured by the eight thermistors at mid-height plane at
Ra = 5.5 × 109. The solid line represents a quadratic fit to the highest temperature reading and
the two temperature readings adjacent to it. The dashed line represents a quadratic fit to the
lowest temperature reading and the two temperature readings adjacent to it. The two vertical
arrows indicate the fitted peak positions of αh and αc , respectively. The dotted line shows a
sinusoidal fit to the profile. It is seen from the figure that, in this case, the sinusoidal fit to the
profile shifts αh to the right (anticlockwise in a) and shifts αc to the left (clockwise in a).

placed in blind holes drilled horizontally from the outside into the sidewall with a
distance of 0.7 mm from the fluid-contact surface. These thermistors are distributed
in three horizontal rows at distances H/4, H/2 and 3H/4 from the bottom plate,
which are denoted as the bottom, middle and top planes (the three dashed lines
in figure 1b), respectively, and in eight vertical columns equally spaced azimuthally
around the cylinder (figure 1a). A multichannel multimetre was used to record the
resistances of the 24 thermistors at a sampling rate of 0.29 Hz, which are converted
into temperatures using calibration curves. Then the azimuthal temperature profile
T (α) at the three heights can be obtained, where α is the azimuthal angle referenced
to location 1. During the measurements, the mean temperature T0 of the bulk fluid



Oscillations of large-scale circulation in turbulent Rayleigh–Bénard convection 371

was kept at 31◦C and hence Pr = 5.3. The measurements covered six values of Ra ,
ranging from 9.0 × 108 to 6.0 × 109, and lasted 70–750 h.

In Xi et al. (2009) the cell was tilted by 2◦ to study the origin of the temperature
oscillations. This is because in addition to the twisting and the sloshing motions, the
orientation of the LSC also meanders randomly. By tilting the cell and thus locking
the LSC orientation, one can remove the stochastic meandering from the signal and
separate the complicated phenomena produced by the different types of motions.
This enabled us to study the phase relationships between temperature oscillations at
various locations. In this work, our focus is on the relationship between the twisting
motion near the top and bottom plates and the sloshing motion at the mid-height
plane. As the LSC meanders azimuthally as a whole across the height of the cell
(Sun, Xi & Xia 2005a), the phase relationship between these two types of motions
can be studied even with the azimuthal meandering present. Therefore, unless stated
otherwise, all measurements in the present work were made with the cell levelled (to
within 0 ± 0.06◦).

As stated above, the temperature measurements in the present case are made with
thermistors embedded in the sidewall, whereas in Xi et al. (2009) the sloshing motion
was obtained from thermistors placed in fluid. It is known that the sidewall acts as
a low-pass filter, thus the thermistors embedded in the sidewall are not sensitive to
the high-frequency signals. Spatially, they actually sense the integrated signal over a
finite area of the sidewall, which leads to a lowered strength of the detected sloshing
oscillation as compared with that using the in-fluid probes. Nevertheless, as we will
see below, the basic pictures obtained from the two cases are essentially the same. As
one of the objectives of the present work is to understand the relationship between the
sloshing oscillation and the twisting oscillations near the plates, we use data measured
simultaneously by the 24 in-wall probes from the three heights (there are only eight
in-fluid probes and that measurements can only be made at one height at a time).
Thus, unless stated otherwise, all results presented in this paper were obtained from
the in-wall probes.

2.2. The temperature-extrema-extraction method

An often-used method based on the multi-probe technique for extracting the dynamic
information about the LSC motion is to fit the temperature azimuthal profile using
a sinusoidal function, i.e. Tk = Ta + A′ cos(kπ/4 − φ′), k = 0, 1, . . . , 7, where Ta is the
azimuthal average of the eight temperature readings, A′ is a measure of the strength
of the LSC and φ′ is the LSC’s orientation (see, e.g. Cioni et al. 1997; Brown et al.
2005; Brown & Ahlers 2006; Xi & Xia 2007, 2008a, b; Funfschilling et al. 2008). This
SF method has been very successful in the study of the azimuthal motion of the LSC,
including rotations, cessations and reversals (see Ahlers et al. in press and references
therein). However, the SF method requires the separation between the hottest and
the coldest azimuthal positions to be π, i.e. the obtained LSC’s central vertical plane
(hereafter referred to as LSC’s central line) is forced to always pass through the cell’s
central vertical axis, which, as we shall show below, is not always the case.

Here, we introduce the temperature-extrema-extraction (TEE) method that
determines first the hottest and coldest azimuthal positions of the bulk fluid and
then the central line of the LSC band. The TEE method has been described very
briefly in Xi et al. (2009). In this section, we give its detailed description, validation
and comparison with the SF method. To illustrate this method, figure 1(c) shows
an example of the typical instantaneous temperature readings (circles) from the
eight thermistors at mid-height plane. The hottest (coldest) azimuthal position of
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Figure 2. The averaged sidewall temperature profile [T (α)−T0] normalized by the temperature
difference �T around the fitted (a) hottest and (b) coldest azimuthal positions obtained at
Ra = 5.5 × 109. Solid lines are quadratic functions.

the bulk fluid along the sidewall was determined by making a quadratic fit around
the highest (lowest) temperature reading. In practice, this requires only the local
maximum (minimum) temperature and the two temperatures directly adjacent to it.
This is because a quadratic function has three degrees-of-freedom and thus can be
uniquely determined by only three data points. We label these azimuthal positions α1,
α2 and α3 with α2 being the position of the local maximum (minimum) temperature.
The position αh (αc) at any plane can then be found by solving analytically the three
quadratic equations between T (αk) and αk (k = 1, 2, 3), i.e.

αh(αc) =
1

2

(
α2

1 − α2
2

)
[T (α2) − T (α3)] −

(
α2

2 − α2
3

)
[T (α1) − T (α2)]

(α1 − α2)[T (α2) − T (α3)] − (α2 − α3)[T (α1) − T (α2)]
. (2.1)

In this paper, the subscripts ‘h’ and ‘c’ are used to denote the quantities associated
with the hot ascending and cold descending flows, respectively, and the subscripts
‘t ’, ‘m’ and ‘b’ for the top, middle and bottom planes, respectively. Here we choose
a quadratic function to fit the local temperature distribution because within a small
range any temperature distribution, whether it is symmetric or not, can be expanded to
a polynomial expression, which makes no physical assumption about the temperature
distribution. As we have only three points around temperature extrema, a quadratic
function is the best choice. To test the validity of the quadratic fit, figure 2 shows the
normalized sidewall temperature profile. Each point is an average of [T (αk)−T0]/�T

(k =α1, α2, α3) in a bin with a small range around α − αh,m (figure 2a) or α − αc,m

(figure 2b). The data around the hottest (figure 2a) and the coldest (figure 2b) positions
are both in good agreement with the quadratic functions (solid lines), indicating that
the quadratic function is indeed a good representation for the temperature distribution
around the hot ascending and cold descending flows. With this method, the three
rows of thermistors can thus provide simultaneously the azimuthal positions of the
hot ascending and cold descending flows at the three heights, which are denoted
as αh,t , αh,m and αh,b, and αc,t , αc,m and αc,b. With the obtained hottest and coldest
positions, the line connecting the two positions is the central line of the LSC band.
The orientation φ of this line is the orientation of the LSC, which is calculated as
φ = (αc + αh + π)/2 if αc < αh and as φ = (αc + αh − π)/2 if αc > αh, the distance
between this line and the cell’s central vertical axis is defined as the off-centre distance
(see figure 1a) and A= (T (αh) − T (αc))/2 is used to characterize the strength of the
LSC, where the factor 1/2 is used in order to compare the obtained A with that
obtained from the SF method. We denote φt , φm and φb, At , Am and Ab and dt , dm
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Figure 3. (a) Time traces of the orientation φm of the LSC central line obtained using the
TEE method and the orientation φ′

m obtained from the SF method. (b) The cross-correlation
functions between the orientations obtained using the two different methods for the top (solid
line), middle (dashed line) and bottom (dotted line) planes. (c) p.d.f. of the two orientations
φm and φ′

m. All data were measured at Ra = 5.5 × 109.

and db as the orientations, the strengths and the off-centre distances of the LSC at the
top middle, and bottom planes, respectively. Therefore, based on the TEE method,
the motion of the LSC can be decomposed into two different modes: The azimuthal
mode and the sloshing mode.

We now compare the orientations and the strengths of the LSC obtained using the
TEE method and those obtained using the SF method. Figure 3(a) shows the time
traces of φm and φ′

m, which are obtained using the same data set measured by the
embedded thermistors. One sees that the time traces are very similar to each other.
This similarity can be characterized by the coefficient of the cross-correlation between
the two quantities. The cross-correlation function between two variables a and b is
defined as

Ca,b(τ ) = 〈(a(t + τ ) − 〈a〉)(b(t) − 〈b〉)〉/σaσb, (2.2)

where σa and σb are standard deviations of a and b, respectively, and 〈· · ·〉 represents
the temporal average. When a = b, Ca,a , denoted as Ca , is the auto-correlation function
of the variable a. Figure 3(b) shows the cross-correlation functions between φ and
φ′ at the three heights. It shows that all these three functions have a positive and
strong correlation with the coefficient being all larger than 0.85 at time lag τ = 0. (The
subpeaks of Cφt ,φ

′
t
and Cφb,φ

′
b

correspond to the twisting oscillations of the LSC near
the top and the bottom plates.) It is further found that this strong positive correlation
exists for all values of Ra investigated. Figure 3(c) shows the probability density
functions (p.d.f.s) of φm and φ′

m. One sees that the two p.d.f.s essentially collapse on
top of each other except that the distribution of φ′

m seems to be a little smoother than
that of φm. This is due to the fact that φm is obtained from the azimuthal positions of
the hot ascending and cold descending flows, which are determined by fitting a total
of five to six thermistor readings, while φ′

m is from the global fitting to eight local
temperatures. However, the basic pictures about the azimuthal motion of the LSC
obtained from both methods are the same.
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measured at Ra = 5.5 × 109.

Figure 4(a) shows the time traces of Am and A′
m. It is seen that the two time traces

are again very similar to each other except that Am is on average ∼5 % larger than
A′

m. Figure 4(b) shows the cross-correlation functions between A and A′ at the three
heights. It similarly shows that all three functions have a strong positive correlation
with their peaks all located at time lag τ =0 and the cross-correlation coefficient
C(τ = 0) all being nearly 0.9.

The above results imply that, as far as the orientation and the strength of the LSC
are concerned, both the SF and the TEE methods give the same results, but the TEE
method in addition determines the LSC’s sloshing motion, which is missed by the
SF method. This is illustrated in figures 5(a) and 5(b). It is also clear that the LSC’s
orientation is determined mainly by the hottest and the coldest azimuthal positions
of the bulk fluid along the sidewall. This is not surprising, since one can see from
figure 1(c) that the sinusoidal fit to the temperature profile shifts the hottest azimuthal
position αh,m right or anticlockwise and shifts the coldest azimuthal position αc,m left
or clockwise and the changes of the obtained orientation of the LSC due to the two
shifts roughly cancel each other.

3. Results and discussion
3.1. The sloshing oscillation of the LSC at mid-height plane

The off-centre distance dm of the LSC’s central line at the mid-height plane is used
to study the sloshing motion of the LSC at that plane. Figure 6(a) shows a typical
time trace of the measured dm normalized by the cell’s diameter D. It is seen from the
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Figure 5. (a) Schematic diagram showing the definitions of the orientation φ and the off-centre
distance d of the LSC obtained using the TEE method. (b) Schematic diagram showing the
definition of the orientation φ′ of the LSC obtained using the SF method. In this method, the
off-centre distance is forced to be always zero.

figure that dm/D fluctuates around 0. We further found that the temporal averages of
dm/D for all six values of Ra are nearly 0. In Xi et al. (2009) a similar trace measured
with the in-fluid thermistors in a tilted cell has been shown. For comparison, we plot
in figure 6(b) a time trace of dm/D measured under the same conditions as in Xi
et al. (2009) but with the cell levelled (0 ± 0.06◦). It shows that dm/D measured from
the in-fluid probes has a stronger strength and its oscillation looks more periodic
when compared with that obtained from the in-wall thermistors. Nevertheless, the
physical pictures revealed by the two time traces are the same, i.e. the LSC’s central
line oscillates horizontally around the cell’s central vertical axis. Figure 6(c) shows
the p.d.f. of dm/D obtained from the in-wall thermistors (solid circles). The p.d.f.
is found to be flatter than a Gaussian function, i.e. the flatness is 2.3. The p.d.f.s
obtained at other Ra share the same features as those shown in figure 6(c), except
for the two lowest Ra . A possible reason for the observed different distributions for
small Ra may be the limited resolution of temperature probes. The accuracies of
thermistors are determined mainly by the calibration process. For the present study,
the 24 in-wall thermistors were calibrated with an accuracy of about 0.01◦C. While
the amplitude of the azimuthal temperature profile is only ∼0.05◦C for the lowest Ra
in the experiment. The temperature contrast along the sidewall is thus limited and
may influence the measured distribution of dm/D for small Ra . For comparison, we
also plot in the same figure the p.d.f. of dm/D obtained from the in-fluid thermistors
(solid circles). It is seen that the in-fluid thermistors reveal a sloshing mode with a
larger oscillation range and an approximately equal distribution, which shows that
the in-fluid thermistors have a higher sensitivity and are able to measure the sloshing
mode more accurately. The difference between the distributions measured from the
in-fluid and the in-wall thermistors are due to the sidewall effects as discussed in § 2.1.

As dm/D oscillates around its mean value of 0, its standard deviation σdm
/D can

be used as a measure of the amplitude of this oscillation. Figure 7(a) shows the
Ra-dependence of σdm

/D obtained from the in-wall (solid circles) and in-fluid (open
circles) thermistors. One sees that σdm

/D depends weakly on Ra for the present range
of Ra with σdm

/D from the in-fluid probes being ∼60 % larger than that obtained
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Figure 6. Time traces of the normalized off-centre distance dm/D from thermistors (a)
embedded into the sidewall and (b) placed in fluid. (c) p.d.f. of dm/D from the in-wall
(solid circles) and in-fluid (open circles) thermistors. The data of the in-fluid thermistors are
taken at Ra = 5.0 × 109 with a sampling rate of 0.76Hz and that of the in-wall probes at
Ra = 5.5 × 109 with a sampling rate of 0.29 Hz.

from the in-wall thermistors. In Xi et al. (2009) it has been shown that the sloshing
or off-centre motion of the LSC exhibits a well-defined time-periodic oscillation. The
prominent peak near f0 in the frequency power spectra of dm (see the second curve
from bottom in figure 8a) corresponds to this periodic oscillation. In figure 7(b) we
plot the Ra-dependence of the normalized frequency corresponding to this prominent
peak obtained from the spectra of dm. The solid line in the figure represents the
power-law fit to the data: H 2f0/κ = 0.12Ra0.49±0.02, with the scaling exponent being
in good agreement with the previous temperature measurements in water (Qiu &
Tong 2001a, 2002; Sun & Xia 2005; Brown, Funfschilling & Ahlers 2007), mercury
(Takeshita et al. 1996) and low-temperature helium gas (Heslot, Castaing & Libchaber
1987; Castaing et al. 1989; Sano, Wu & Libchaber 1989; Niemela et al. 2001). This
result further indicates that the previously observed temperature oscillations near
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the mid-height of the cell indeed originate from the sloshing oscillation of the LSC.
Taken together, the physical picture behind figure 6 is that the LSC’s central line
oscillates time-periodically around the cell’s central vertical axis with an amplitude
nearly independent of the turbulent intensity.
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3.2. The relationship between the sloshing and the torsional modes of the LSC

Figure 8(a) shows, from top to bottom, the frequency power spectra of φt , φm, φb,
dt , dm and db. For the orientations of the LSC obtained at the three heights, the
prominent peak near f0 representing periodic oscillation can be seen clearly for φt

and φb, but is absent for the mid-height plane (φm). These are consistent with those
observed by Funfschilling et al. (2008) and Xi & Xia (2008b) and correspond to
the twisting mode of the LSC (Funfschilling & Ahlers 2004). Note that the power
spectra also show that the sloshing and torsional modes have the same periodicity as
determined by the position of the prominent peak. We further found that although
φm will also exhibit oscillation when the cell is tilted by several degrees, the strength
of this oscillation obtained at the mid-height plane is much weaker than those of φt

and φb, i.e. the peak height of the spectra of φm at f0 is much smaller than those of φt

and φb. However, for the off-centre distance, the situation is opposite. In figure 8(a)
one sees that the strength of the oscillation peak for dm at the mid-height plane is
much stronger than those of dt and db.

To understand this difference and to find out the relationship between the sloshing
mode at the mid-height plane and the torsional mode of the LSC near the top and
bottom plates, we examine the frequency power spectra of the azimuthal positions
of the hot ascending and cold descending flows at the three heights, as both the
orientation φ and the off-centre distance d of the LSC are obtained from these
positions. Figure 8(b) shows that the spectra of αc,t and αh,b exhibit an oscillation
peak near f0. Whereas the spectra of αh,t and αc,b both give very faint oscillations,
which are due to a tilted ellipse-like circulation path of the LSC when viewed from
the side (Qiu & Tong 2001b; Sun & Xia 2005; Sun et al. 2005b). The thermistors
embedded into the sidewall cannot feel accurately the hot ascending flow of the LSC
at the top-plane and the cold descending flow of the LSC at the bottom-plane, since
they are far away from the sidewall at the respective heights (figure 1b). Therefore,
at the top and bottom planes, the in-wall probes may not be able to measure the
orientation and the off-centre distance of the LSC as accurately as those at the
mid-height plane. This suggests that the relatively weak oscillation peaks of dt and db

shown in figure 8(a) are mainly due to the oscillations of αc,t and αh,b. The surprising
thing shown in figure 8(b) is that the spectra of the azimuthal positions αh,m and αc,m

of the hot ascending and cold descending flows at the mid-height plane both exhibit a
well-defined time-periodic oscillation with the oscillation peak located at f0 and with
the same strength as those of αh,b and αc,t . This implies that the azimuthal positions
of the hot ascending and cold descending fluids both oscillate periodically along the
sidewall irrespective of whether they are near the plates or at the mid-height of the
cell.

Figure 9(a) shows typical time traces of αh,b and αh,m measured at the same time.
It is seen that the two time traces are rather similar to each other except for a
several seconds delay between them. The cross-correlation function Cαh,m,αh,b

shown in
figure 9(c) quantifies this similarity. It shows that αh,m and αh,b have a strong positive
correlation with the main peak located at τ � 6±1 s � (0.21 ± 0.04)τ0 (Here, τ0 = 1/f0

is the oscillation period of the LSC). This positive time-delay indicates that the
azimuthal motion of αh,m lags that of αh,b, which is easy to understand since the hot
ascending flow rises up from bottom. Similar situation can be seen for the relation
between αc,t and αc,m. Figure 9(b) shows the time traces of αc,t and αc,m, which again
are quite similar to each other. Figure 9(d ) plots Cαc,m,αc,t

, and it is found that αc,m

correlates strongly with αc,t with a positive time delay τ � 5 + 1 s � (0.18 ± 0.04)τ0
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indicating that the azimuthal motion of αc,m lags that of αc,t . Here we note that the
time delay of the main peak of Cαc,m,αc,t

is essentially the same as that of Cαh,m,αh,b

within experimental uncertainty, this is due to the fact that the distance between
the middle and the top planes is the same as the distance between the middle and
bottom ones. Note also that the subpeaks of Cαh,m,αh,b

and Cαc,m,αc,t
correspond to the

periodic oscillations shown in figure 8(b). These results further imply that the hot
ascending and cold descending flows go up and fall down coherently, thus propagate
their azimuthal positional oscillations along the sidewall.

The torsional mode of the LSC can be revealed by the horizontal motions of the
hot ascending and cold descending flows near the top and bottom plates. Here, we
define

ωi,j =
dαi,j

dt
, (3.1)

as the azimuthal angular velocity of αi,j , where i = h or c and j = t , m or b.
Figure 10(a) shows the cross-correlation function Cωc,t ,ωh,b

between ωc,t and ωh,b

(dash-dotted line). It is seen that Cωc,t ,ωh,b
oscillates and ωc,t anticorrelates with ωh,b

with a strong negative peak located at τ = 0. The negative peak at τ =0 indicates
that αc,t rotates clockwise when αh,b rotates anticlockwise and vice versa, implying
the twisting motion of the LSC. Recall that the azimuthal motions of αh,m and αc,m

follow coherently those of αh,b and αc,t , respectively, with the same time delay. The
azimuthal angular velocities of αh,m and αc,m would hence be expected to exhibit the
same behaviour as those of αh,b and αc,t , and this is indeed observed from figure 10(a),
which shows that Cωc,m,ωh,m

(solid line) is the same as Cωc,t ,ωh,b
(dash-dotted line), i.e.

periodic oscillations and a strong negative peak at τ = 0. Here, we also plot Cωc,m,ωh,m

obtained from the in-fluid thermistors (dashed line). It is seen that Cωc,m,ωh,m
obtained

from the in-fluid thermistors exhibits the oscillation with much stronger periodicity
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sloshing oscillation is at an extremum. The curved arrows show the directions of the angular
velocities and the horizontal arrow shows the moving direction of the LSC’s central line.
(c) Same as (b) but half an oscillation period later.

than that obtained from the in-wall thermistors (solid line). However, the basic
picture is the same for both cases. These results indicate that the azimuthal positional
oscillations of the hot ascending and cold descending flows at the mid-height plane
are out of phase with each other by π, leading to the sloshing mode of the LSC at
the mid-height plane. Figures 10(b) and 10(c) illustrate how the sloshing mode and
the torsional mode are connected, as manifested by the horizontal motions of the
upward going hot plumes and downward going cold plumes. Figure 10(b) shows that
αc,m rotates clockwise when αh,m rotates anticlockwise, and the line connecting them
thus moves to the right. Half an oscillation period later (figure 10c), the motion of
αc,m changes to anticlockwise while that of αh,m to clockwise; this makes the LSC
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central line move to the left. The periodic occurrence of this process thus generates
the sloshing oscillation of the LSC and produces the prominent peak near f0 on the
spectra of dm. On the other hand, as the orientation φm equals to (αh,m + αc,m)/2 plus
a constant, the anticorrelation between ωh,m and ωc,m would cancel out the periodic
oscillations, and hence it is not surprising to see in figure 8(a) that an oscillation peak
is absent for the spectra of φm.

The phase relationship between the twisting and the sloshing oscillations can
be shown more directly by studying their cross-correlation functions. We use the
deviations φt − φm and φb − φm of the top and the bottom plane orientations from
the orientation of the mid-height plane to characterize the twisting oscillation of
the LSC (Funfschilling et al. 2008). Figure 11 shows the cross-correlation functions
Cdm,φb−φm

(solid line) and Cdm,φt −φm
(dashed line) versus the normalized delay time τ/τ0.

Here, τ0 = 1/f0 is the oscillation period of the LSC. The maximum of Cdm,φb−φm
at

τ � τ0/4 indicates that the twisting oscillation near the bottom plate and the sloshing
oscillation at the mid-height plane are out of phase with each other by π/2 and
the sloshing oscillation lags the twisting oscillation near the bottom plate. Similar
situation can be seen for the relation between dm and φt − φm, i.e. the maximum of
Cdm,φt −φm

at τ � −τ0/4 indicates that the twisting oscillation near the top plate and
the sloshing oscillation at the mid-height plane are also π/2 out of phase and the
sloshing oscillation leads the twisting oscillation near the top plate. Taken together,
the twisting oscillation near the top and bottom plates and the sloshing oscillation
at the mid-height plane are out of phase with each other by π/2, i.e. when one is
maximally displaced from the mean flow the other is not displaced from the mean
flow.

3.3. Direct velocity measurement of the sloshing motion

In this subsection we present direct evidence of the sloshing oscillation of the LSC
from particle image velocimetry (PIV) measurement of the horizontal velocity field
at the mid-height plane in a sapphire cell. Both the sapphire cell and the horizontal
velocity measurement using the PIV technique have been described in detail previously
(Xi et al. 2006; Zhou, Sun & Xia 2007a) and hence we outline only their main features
here. The sapphire cell consists of two sapphire discs with thickness 5mm as the top
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and bottom plates and a Plexiglas tube with thickness 8mm as the sidewall. The cell’s
inner diameter and height are both 18.5 cm, so the aspect ratio of the cell is also
unity. In the present work, 50 μm diameter polyamid spheres (density 1.03 g cm−3)
were used as the seeding particles and a horizontal laser light-sheet with thickness
∼2mm was used to illuminate the particles in the mid-height plane of the cell. The
measuring area is a square of 18.5 × 18.5 cm2, which covers completely the horizontal
cross-section of the cell. The spatial resolution is 0.29 cm, corresponding to 63 × 63
velocity vectors in each two-dimensional velocity map. Denote the laser-illuminated
plane as the (x, y)-plane and the centre of the mid-height horizontal cross-section
of the cell as the origin O of the coordinates (see figure 14a), then two horizontal
velocity components u(x, y) and v(x, y) are measured. In these PIV measurements, the
cell was tilted by ∼1◦ at position 1, and thus the orientation of the LSC was locked
along the x-direction (see figure 1a). For the PIV experiment, the measurements were
made at Ra = 3.0 × 109 and 6.0 × 109 and at Pr = 4.3. A total of 20 000 vector maps
were acquired for each Ra at a sampling rate of ∼2.2 Hz. As the two measurements
give the same results, results only for Ra = 6.0 × 109 will be presented.

To study the global motion of the central bulk fluid, we use the velocity vector
V (t) = Vx(t)x̂ + Vy(t) ŷ to characterize the overall flow behaviour at the mid-height
plane, where Vx(t) and Vy(t) are the spatial averages of the local velocity components
u(t) and v(t), respectively, within a circular area centred at the centre of the
measurement area. The diameter of the circular area is 5 cm and there are 221
vectors contained in this circular region for averaging. A circle with a diameter of
10 cm has also been used and the obtained results are essentially the same (see Xi et al.

2006). The orientation θ ≡ arctan(Vy/Vx) and the magnitude V ≡ |V | =
√

V 2
x + V 2

y

of the averaged vector are then measures of the orientation and the strength of the
motion of the central bulk fluid, respectively.

Note that the horizontal velocity field investigated in Xi et al. (2006) was obtained
near the top plate. Figure 12(a) shows the time-averaged velocity vector map measured
at 2 cm from the top plate, where the LSC is dominated mainly by the horizontal
velocities. Therefore, the spatially averaged velocity vector V (t) measured at the
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horizontal planes near the top plate can be used as a measure of the orientation
vector V LSC of the LSC and its orientation θ can be used to characterize the
orientation of the LSC at the corresponding height. Indeed, Xi et al. (2006) have used
the properties of V and θ measured near the top plate to characterize the azimuthal
motion of the LSC in turbulent RB system. However, the situation is different when
the measurement is made near the cell’s mid-height plane, which is the case here. This
is because at the cell’s mid-height plane the LSC is concentrated near the sidewall
and dominated mainly by vertical velocities, as shown in figure 12(b) (see also the
circulation path of the LCS in figure 1(b)). Thus, the velocity vector V (t) spatially
averaged from the velocities measured near cell centre cannot be used to represent
the orientation vector of the LSC and its orientation θ is no longer a direct measure
of the LSC’s orientation. Therefore, θ measured at the mid-height plane and φm

(the orientation of the LSC obtained from the azimuthal temperature profile) would
exhibit different behaviours. As we shall see below, this is indeed the case.

Figure 13(a) shows the p.d.f. of the measured velocity orientation θ . It is seen that
the p.d.f. of θ , which is significantly different from that of φm in figure 3(c), exhibits a
bimodal distribution with two peaks located at the orientations (θ = ±0.25) that are
perpendicular to the preferred orientation of the LSC (θ = 0). The probabilities of
θ = ±0.25 are nearly three times larger than those of θ = 0 and θ = ±0.5, suggesting
that the central bulk fluid is much more likely to move in the direction perpendicular
to the LSC’s vertical circulation plane rather than in the LSC’s preferred direction
itself. To study the flow strength of the central bulk fluid in different orientations,
we calculate the conditional average 〈V |θ〉 on the velocity orientation θ , as shown
in figure 13(b). One sees that the averaged-velocity magnitudes in the directions
(θ = ±0.25) perpendicular to the LSC plane are much stronger than the magnitudes
in all other directions, especially than those in the preferred direction of the LSC.
Figure 13(c) shows the auto-correlation functions CVx

(dashed line) and CVy
(solid

line). Both show oscillations, but the oscillation strength of Vy (in the direction
perpendicular to the LSC plane) is much stronger than that of Vx (along the LSC’s
preferred direction) and Vy oscillates more coherently than Vx . In fact, a previous
single-point velocity measurement has shown that at the cell centre the strongest
velocity oscillation is along the direction perpendicular to the LSC plane and that the
strength of this oscillation decays away from the cell centre towards the plates (Qiu
et al. 2004; Sun et al. 2005b). We further note that the oscillation frequency of Vy

is the same as that of the sloshing motion of the LSC but 20 % larger than that of
Vx . Different oscillation frequencies for Vx and Vy have also been observed, but not
explicitly recognized, by Qiu et al. (2004) and Sun et al. (2005b). The existence of two
different oscillation frequencies in turbulent convection with fixed control parameters
(Ra and Pr) have already been observed previously. Xi et al. (2006) studied the
azimuthal motion of the LSC near the top plate and they found that although the
magnitude and the orientation of the LSC both exhibit oscillations, the oscillation of
the LSC’s magnitude is slower than that of the LSC’s orientation. Brown et al. (2007)
compared the twisting-oscillation period of the LSC (or the oscillation of the LSC’s
orientation) and the plume turnover time (determined from the auto-correlation and
cross-correlation of temperature in their case) and their results showed that above a
critical Rayleigh number (e.g. 3 × 109 for Pr = 4.3) the twisting-oscillation period of
the LSC is longer than the plume turnover time. Taking all these results together, it
seems that there exist at least three different oscillation frequencies in turbulent RB
system. Xia (2007) suggested that different oscillation frequencies may indicate the
presence of more than one clocks (or more than one driving mechanism) in turbulent



384 Q. Zhou, H.-D. Xi, S.-Q. Zhou, C. Sun and K.-Q. Xia

�
V

|θ
�
 (

cm
 s

–
1
)

0.4

0.5

0.6

θ (2π)

–0.50 –0.25 –0.00 0.25 0.50

θ (2π)

–0.50

0 100 200 300

–0.25 –0.00 0.25 0.50

p
.d

.f

0.6

0.8

1.0

1.2

1.4

1.6

1.8

τ (s)

A
u
to

-c
o
rr

el
at

io
n

–0.5

0.0

0.5

1.0

Vx

Vy

(a)

(b)

(c)

Figure 13. (a) p.d.f. of the orientation θ of the spatially averaged vector V . (b) The conditional
average 〈V |θ〉 on the velocity orientation θ . (c) The auto-correlation functions of Vx and Vy .



Oscillations of large-scale circulation in turbulent Rayleigh–Bénard convection 385

Time (s)

0 100 300200

v 
(c

m
 s

–
1
)

–2

–1

0

1

2

3

v (x,0)

v (–x,0)

O x–x

v (x,0)v (–x,0)

(a)

(b)

x

y

O

Figure 14. (a) Coordinate system and schematic diagram of the mid-height horizontal
cross-section of the cell. The origin O of the coordinates is chosen as the centre of the
cross-section and thus the z-axis (not shown in the figure) is along the cell’s central vertical
axis. The two vertical arrows show the velocity components v located at positions (x, 0) and
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x/D = 0.11.

RB system, but pointed out that this requires further experimental verifications. An
alternative explanation is that there exists only one driving mechanism or clock
in the system and that the oscillations in the different quantities are driven by
the same clock. Because of the presence of a strongly turbulent background, this
oscillation is damped to a varying degree or by different mechanisms in the various
quantities, resulting in the difference in the measured frequencies of these quantities.
Notwithstanding the above, the overall picture emerging from the PIV measurements
is that the translational motion of the central bulk fluid in the direction perpendicular
to the LSC’s vertical circulation plane is more probable, much stronger and more
coherent than the motions in all other directions, which provides a direct evidence
for the sloshing motion of the LSC at the mid-height plane.

In a previous work, Sun et al. (2005b) measured the two-dimensional velocity field
in the (y, z)-plane, which is perpendicular to the LSC’s vertical circulation plane and
studied the phase relationships among the horizontal velocity components v(y) along
the y-axis and among v(z) along the z-axis. For v(y) along the y-axis, their results
showed that the velocity component v(y) at different values of y are highly correlated
and have a common phase across the cell’s entire diameter. For v(z) along the z-axis,
their results revealed that the horizontal velocity component v(z) at different height
z remains in phase along the z-axis mainly in the middle one-half of the cell, while
the horizontal velocity components v(z) near the upper and lower conducting plates
gradually lag behind those in the central region of the cell. Both of these results
imply that the motion of the central bulk fluid is spatially coherent and the sloshing
oscillation is the dominant mode of the central bulk fluid motion.

The bulk sloshing mode of the flow field can also be revealed by investigating
the variation along the x-axis of the y-velocity component v(x, 0). Here we study
the relationship between v(x, 0) and v(−x, 0) for various values of x(>0). If the
azimuthal rotation is the dominant motion of the LSC, v(x, 0) should anticorrelate
with v(−x, 0), i.e. v(x, 0) is along the y-direction when v(−x, 0) is along the
−y-direction and vice versa. While v(x, 0) correlates strongly with v(−x, 0) for the
situation that the sloshing motion is the LSC’s dominant mode, i.e. v(x, 0) and
v(−x, 0) are along the same direction. Figure 14(b) shows the typical time series
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Figure 15. (a) The cross-correlation functions C(τ, x) between v(x, 0) and v(−x, 0) for
x/D = 0.11 (solid line) and 0.33 (dashed line). (b) The cross-correlation coefficient C(τ = 0, x)
as a function of x.

of v(x, 0) and v(−x, 0) for x/D =0.11. It is seen that v(x, 0) and v(−x, 0) are very
similar to each other and along the same direction for most of the time. In addition,
both v(x, 0) and v(−x, 0) are found to exhibit a well-defined periodic oscillation,
corresponding to the sloshing oscillation of the LSC. To characterize quantitatively
these features, figure 15(a) shows the cross-correlation functions C(τ, x) between
v(x, 0) and v(−x, 0) for x/D =0.11 (solid line) and 0.33 (dashed line). It shows that
both functions oscillate and have a large positive peak located at τ = 0, indicating
that v(x, 0) correlates strongly with v(−x, 0). It is further found that this peak exists
for all x and all horizontal velocity oscillations of v(x, 0) have a common phase
across the cell’s entire diameter. Figure 15(b) shows the cross-correlation coefficient
C(τ = 0, x) as a function of x. One sees that C(τ =0, x) � 0.2 for all x and it has a
peak near the sidewall (around x/D � 0.42). The peak of C(τ =0, x) near the sidewall
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represents the anticorrelation between ωh,m and ωc,m, i.e. the sloshing motion of the
LSC, as illustrated in figures 10(b) and 10(c). Both the strong positive peak located at
τ = 0 and the oscillation of the cross-correlation functions C(τ, x) between v(x, 0) and
v(x, 0) for all x reveal the fact that the dominant motion of the LSC at the mid-height
plane is indeed the sloshing oscillation, which provides another direct evidence for
the sloshing mode of the LSC at the mid-height plane.

4. Conclusion
To conclude, we have made a detailed experimental study of the oscillations of the

LSC in a cylindrical turbulent RB convection cell with aspect ratio unity using water
as working fluid. Direct spatial measurements of both the temperature and velocity
fields were carried out to study the motion of the LSC.

Direct measurements of the horizontal velocity field at the cell’s mid-height plane
using the PIV technique were made at Ra =3.0 × 109 and 6.0 × 109 and Pr =4.3.
It is found that the horizontal translational motion of the central bulk fluid in the
direction perpendicular to the vertical circulation plane of the LSC is more probable,
much stronger and more coherent than the motions in all other directions. For the
velocity component v(x, 0) perpendicular to the LSC plane, v(x, 0) for all values of x

are found to correlate strongly with each other, especially for the velocities near the
sidewall, and have a common phase across the cell’s entire diameter. Both of these
results provide direct evidences for the sloshing mode of the bulk flow dynamics near
the mid-height plane.

The temperature measurement was performed over the Rayleigh number range 9×
108 � Ra � 6×109 and at fixed Prandtl number Pr = 5.3. At each Ra the instantaneous
azimuthal temperature profile along the sidewall at three different heights, i.e. H/4,
H/2 and 3H/4 from the bottom plate, was measured. To study the motion of the
LSC, we developed a new method, the TEE method. Using this method, the azimuthal
angular positions of the hot ascending and cold descending flows at each height were
obtained by making a quadratic fit around the highest and the lowest temperature
readings, respectively, and the line connecting these two positions is the central line
of the LSC band (when viewed from the top). The orientation of this line is thus
the orientation of the LSC and the distance between this line and the cell’s central
vertical axis is defined as the off-centre distance. The motion of the LSC is therefore
decomposed into two different modes: the azimuthal mode and the translational
or sloshing mode. When compared to the SF method, it is found that, as far as
the azimuthal motion of the LSC is concerned, the two methods give the same
information in terms of both the orientation and the flow strength of the LSC, while
the TEE method can in addition determine the LSC’s sloshing motion that is missed
by the SF method. With the TEE method, the LSC’s central line is found to oscillate
time-periodically around the cell’s central vertical axis with an amplitude being nearly
independent of the turbulent intensity, leading to the sloshing mode of the LSC.

It is well known that in turbulent RB convection the LSC is self-organized from
thermal plumes (Xi et al. 2004) and it is driven by the buoyancy of the plumes
(Xia et al. 2003). We have now shown that the horizontal motions of the plumes
are in turn modulated by the velocity field itself. Thus, as far as the horizontal
motion of the flow is concerned, the plumes behave as passive tracers. This allows
us to determine the motion of the LSC from the azimuthal positions of the hottest
and the coldest fluids, based on the temperature measurement. This also suggests
that the out-of-phase azimuthal positional oscillations of the hot ascending and cold
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descending flows are manifestations of the torsional and sloshing modes of the LSC.
When these two flows are near the top and bottom plates, the observed motion of the
LSC is torsional. When they are near the mid-height plane, the observed motion of the
LSC is the sloshing oscillation. It should be stressed that this positional oscillation
of the hot and cold fluids does not imply periodic emission of plumes from the
plates. In fact, in a recent experimental work, Xi et al. (2009) have shown that the
temperatures in the thermal boundary layers in regions where plumes are emitted
show no oscillations but the temperatures measured just outside the thermal boundary
layer show strong oscillations, i.e. only after plumes left from the boundary layers do
they exhibit oscillatory behaviour. This is also evidenced by our PIV measurements.
Our results show that the bulk fluids in the cell’s central region exhibit a strong and
coherent oscillation across the cell diameter in the direction perpendicular to the LSC.
This cannot be caused by the horizontal oscillations of the hot ascending and cold
descending plumes near the sidewall (since the fluid is not rigid body), rather, the
plume motions are just manifestations of the velocity field oscillation. This further
shows that, as far as horizontal motion is concerned, the plumes are being driven by,
instead of driving, the bulk flow. Therefore, the horizontal positional oscillations of
the hottest and the coldest fluids are due to the modulation of the bulk flow dynamics
rather than originating from the boundary layer.

Further investigations about the phase relation between the torsional and the
sloshing modes showed that there is a π/2 phase difference between the two modes.
This constant phase difference, together with their same oscillation frequency, suggests
that the two modes have the same origin. Perhaps a related oscillation phenomenon
in a different type of flow system, where a recirculation that couples boundary layers
induces the oscillation that also displays an azimuthal precession, has been studied
and explained by the boundary layer coupling model (Rehab, Villermaux & Hopfinger
1997). However, the detailed mechanism for the oscillation dynamics in the turbulent
RB convection remains unknown, which will be the focus of future studies.

We gratefully acknowledge support of this work by the Hong Kong Research
Grants Council under Grant Nos. CUHK 403806, 403807 and 404307.
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